
www.vega-absolute.ru

IOT Vega
Server
Manual

Interruption
There is description of the IOT Vega Server abilities, ways

to communicate with it and also settings for the first

launch

IOT Vega Server/Manual

2

Revision 14 - 01.03.2021

Contents

IOT Vega Server description .. 3

Abilities .. 4

Functionality .. 5

Installation ... 6

Settings .. 8

IOT Vega AdminTool .. 13

Attachment A. Description of the database structure .. 19

Attachment B. Structure and composition of the main messages in the console 23

IOT Vega Server/Manual

3

Revision 14 - 01.03.2021

IOT Vega Server description

The IOT Vega Server is a tool for organizing LoRaWAN networks of any scale.
It is intended for control of the base network of base stations operating under the

control of the Packet forwarder software from Semtech, receiving data from the end
devices and transferring them to external applications, as well as transferring data from
external applications to LoRaWAN devices.

The server operates according to the LoRaWAN 1.02 specification and supports
any end devices that operate under this version of the specification.

All data received from terminals is stored in the database built into the IOT Vega
Server and is always available for external applications.

An open API based on Web Socket technology allows you to connect external
applications to IOT Vega Server and use LoRaWAN's network capabilities in your
projects.

IOT Vega Server is released as a console application for Windows, Linux and
Linux-ARM (assembly for launching on gateways platform) operating systems.

To manage the server, IOT Vega AdminTool application is used with a simple
user-friendly interface. AdminTool opens to the server administrator a wide range of
options for managing the LoRaWAN network. With AdminTool, you can add new
LoRaWAN endpoints to the network, view the network map, monitor the base stations,
and manage user rights. IOT Vega AdminTool is provided as a Web application.

To work with devices, IOT Vega Pulse client application is used with a wide range
of data extraction, processing and presentation capabilities in various formats (table,
graph, report, diagram).

IOT Vega Server/Manual

4

Revision 14 - 01.03.2021

Abilities

Some limits for software are listed below:

o The maximum frequency of messages received from end devices in the local area
network coverage area (coverage area of one Gateway) cannot exceed the value:
10 packets per minute with confirmation and 20 packets per minute without
confirmation.

o If the communication period for end devices with the server is once a day, the
maximum number of such devices in the coverage area of the local network
cannot exceed three thousand units.

IOT Vega Server/Manual

5

Revision 14 - 01.03.2021

Functionality

o Support of all LoRaWAN 1.0.1 end devices
o Support of Class A and C end devices
o Integrated database
o Support of work with an external database
o User-friendly administrator application
o Network mapping
o Managing of network users
o Flexible alignment of devices connected to the server
o Ability to set a custom frequency plan
o Packets online browsing from each device
o Communication plots for each device within the network

IOT Vega Server/Manual

6

Revision 14 - 01.03.2021

Installation

Before the server’s updating it is recommend making the reserve copy of the
database (DB) and the configuration file for the following reasons:

• The new version of the server modifies DB structure, therefore in the case of
the necessary to back to the previous version the server will cannot working
with modified DB;

• The configuration file may replace by the configuration file from the
installation package. Linux version saves configuration file before installing
and creates the new configuration file taking into account the previous saved
values. It may path to errors and settings will be lost. The updating of the
configuration file is necessary because the new version of the server may
contain the new settings.

The version for Windows does not require installa
3tion. You need to unzip the archive and run the executable.
For the correct operation of the server, it is necessary to install the both libraries

that are located in the IOT Vega Server/msvc c ++ 2013. Then you can start working
with the server.

The Linux version comes in the form of an installation DEB package for 32-bit and

64-bit systems.
The process of installing the application on Linux:

• download file to PC
• install by running the command: sudo dpkg -i /path/to /file/iot-vega-

server-1.2.0.deb;
• to configure, you need to change the contents of the file with the settings

/opt/iot-vega-server/settings.conf;
• to start the server you must execute a script: sudo ./iot-vega-server.sh in

the directory /opt/iot-vega-server , or write a new script specifying the path
to the libraries (installation directory).

For correct working of MySQL plugin in Linux operation system it is necessary to
make sure that libssl library (version less than 1.1.0) presented and symbolic links are
valid. The default links supplies with the server’s packet but in real either library versions
or installation paths are different. So server launching is invalid sometimes. For links
recovering you need to do the follow steps:

• go to directory with the server files cd /opt/iot-vega-server/sqldrivers and
run the command LD_LIBRARY_PATH=/opt/iot-vega-server/ ldd
libqsqlmysql.so.

IOT Vega Server/Manual

7

Revision 14 - 01.03.2021

Approximate result is:

linux-vdso.so.1 => (0x00007ffd035fe000)
libQt5Sql.so.5 => /opt/iot-vega-server/libQt5Sql.so.5 (0x00007f9a76730000)
libQt5Core.so.5 => /opt/iot-vega-server/libQt5Core.so.5 (0x00007f9a76010000)
libmysqlclient.so.18 => /opt/iot-vega-server/libmysqlclient.so.18 (0x00007f9a75a40000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f9a75822000)
libz.so.1 => /lib/x86_64-linux-gnu/libz.so.1 (0x00007f9a75609000)
libssl.so.10 => /opt/iot-vega-server/libssl.so.10 (0x00007f9a753aa000)
libcrypto.so.10 => /opt/iot-vega-server/libcrypto.so.10 (0x00007f9a74fce000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f9a74dca000)
libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f9a74ac6000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f9a747c0000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f9a745aa000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f9a741e1000)
libicui18n.so.56 => /opt/iot-vega-server/libicui18n.so.56 (0x00007f9a73d48000)
libicuuc.so.56 => /opt/iot-vega-server/libicuuc.so.56 (0x00007f9a73990000)
libicudata.so.56 => /opt/iot-vega-server/libicudata.so.56 (0x00007f9a71fad000)
librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007f9a71da5000)
libgthread-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgthread-2.0.so.0 (0x00007f9a71ba3000)
libglib-2.0.so.0 => /lib/x86_64-linux-gnu/libglib-2.0.so.0 (0x00007f9a7189b000)
/lib64/ld-linux-x86-64.so.2 (0x00007f9a76b8a000)
libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007f9a7165d000)

That command displays dependencies for MySQL database plugin. If case of
empty lines presence, it is necessary to find libraries on the PC with Server
and write the path to them. The next steps are void to that:

• Take the search (command find / -name “libcrypto*”) and create symbolic
links (command ln –s “path_to_library” libcrypto.so.10) in the server
directory (/opt/iot-vega-server) for libcrypto and libssl files;

• Then run the command again: LD_LIBRARY_PATH=/opt/iot-vega-server/
ldd libqsqlmysql.so in the directory with plugins and became sure that all
dependencies are satisfied.

The version for Linux-ARM does not require installation. You need to unzip the
archive iot-vega-server (armhf) v1.1.5.tar.gz at the /opt/ directory by the command tar
–xvf iot-vega-server (armhf) v1.1.5.tar.gz.

Then you need to change the configuration file up to your requirements. Server
launched by the iot-vega-server.sh script.

Work with external database not supported.

 It is recommend to install Linux-ARM server on the external memory
card. Because server creates database file and LOG’s files while it
works. Those files may have a big size and decrease the lifetime of the
integrated memory card.

IOT Vega Server/Manual

8

Revision 14 - 01.03.2021

Settings

The server is autonomous, only the initial configuration is required before the
server starting. To perform the initial configuration of the server, you need to go to the
IOT Vega Server folder and open the settings.conf file using any text editor (for example,
Notepad).

When editing the settings.conf file, you cannot use the "!" symbol - an
exclamation point

The contents of the file are as follows:

Host connection settings
[host]

IP-address for UDP connection (gateway connection)
ip=127.0.0.1

Port for UDP connection (gateway connection)
udpPort=8001

Port for TCP (WebSocket) connection
tcpPort=8002

"path" part of webSocket address
webSocketPath=/

Flag of using SSL encryption for WebSocket
useSSL=0

SSL certificate filename (certificate must be in server’s directory)
certFileName=cert.crt

SSL key filename (key must be in server’s directory)
keyFileName=key.key

LoRaWAN network settings
[lora]

LoRaWAN network identifier (should be random between 1 and 127)
networkID=1

LoRaWAN sub network identifier (should be random for subnetwork) [between
1 and 131071

networkArbitraryID=124365
Flag for using Plug-and-Play gateways function.
If this value is 1, server would automatically append all gateways which
connected to one

usePnPGateway=1

Super user options
[root]

Login for super user
root=root

Password for super user (recommendation: change this password to your own)
password=123

Console settings (volume of debug information)
[console]

Maximum level of console messages that will be shown (levels of messages
represented below)

maxMsgLevel=20
Maximum level of console messages that will be saved into LOG file (levels of
messages represented below)

IOT Vega Server/Manual

9

Revision 14 - 01.03.2021

Console message levels:
errors = 0
uplink = 1
downlink = 2
warning = 3
info = 4
debug = 20

maxLogMsgLevel=0
Maximum count of log files. Now size of each log file internally constructed to
25MB.
0 = unlimit count
1 and 2 = 2 files: current and previous
3 = 3 files: current and 2 previous
...
> 1000 = unlimit count

maxLogFilesCnt=3

Common database settings
[database]

The database would be optimized in this local time each day (format [hh:mm:ss]
)
This operation cause blocking of database for some small time (about 10
seconds and below - depending on database size)

taskOptimizationTime=21:00:00
Period of database defragmentation in days. This operation need to scale down
of database size.
This operation cause blocking of database for some time (about several minutes
- depending on database size).
So use real period value!
0 = defragmentation is not processed
1 = each 1 day (not recommend)
...
> 365 = defragmentation is not processed

defragPeriod=30

External DataBase settings
[external_db]

Flag of using external DB
useExternalDb=0

Type of external DB. Supported only next types:
MYSQL
SQLITE

typeExternalDb=MYSQL
Name of external DB (schema's name for MYSQL)

nameExternalDb=server
IP and port of DB's server ("localhost" is supported)

ipExternalDb=127.0.0.1
portExternalDb=5505

User login and password (user should have maximum level of privileges)
userExternalDb=admin
passwordExternalDb=admin

self-test settings
[selftest]
 # Flag for enabling anonymous reports with possible server errors
enableReports=1

Common email settings
[email]

Timeout in seconds between two serial email sending

IOT Vega Server/Manual

10

Revision 14 - 01.03.2021

emailTimeout=3

The [host] section contains port and network connection settings:

ip - IP address through which the base stations will work

This parameter must be changed to the correct IP address through
which the base stations will work. Otherwise, there will be no
communication with the base stations

udpPort – port for the base stations (BS);
tcpPort – port for external applications (including for AdminTool);
webSocketPath - the contents of the "path" field in the WebSocket address. If you
specify /ws in this field, then when you connect from AdminTool you will need to
specify ws://address: port/ws;
useSSL - flag to enable SSL encryption for the WebSocket;
certFileName - the name of the file that contains the SSL certificate (with the extension);
keyFileName - the name of the file that contains the SSL key (with the extension).

To establish the correct operation of SSL encryption, you must perform the
following actions:

• Obtain an SSL certificate (and a key) signed by a trusted certification authority
(this can also be a free trusted center, for example, sslforfree or letsencrypt);

• Install OpenSSL version 1.0.2 (the server does not work with the version of
OpenSSL 1.1.0);

• Copy the certificate and key files (for linux it is enough to create links) in the
directory with the server;

• Allow SSL encryption, prescribe the appropriate file names (with a certificate
and a key) in the configuration file;

• Start the server, monitor for possible errors.

OpenSSL for Windows is available on iotvega.ru by link
http://en.iotvega.com/content/ru/soft/server/Win32OpenSSL-1_0_2n.zip.

The [lora] section contains the LoRa network’s identification dates.

networkID is parameter which determinate the LoRaWAN network’s identificator. Before
running the server, you must set a random value in the range from 1 to 127 inclusive.

If several LoRaWAN networks use the same NetworkID in the
immediate vicinity - each of the networks will continue to work in
normal mode, but periodically there will be errors about the
incorrectness of the NwkSKey of this or that device:
“INVALID_DEVICE_NETWORK_SESSION_KEY”

networkArbitraryID – determinates subnet ID. Before server startup, it is necessary to set
up random (or specific) value from 1 to 131071 inclusive.
usePnPGateway - the permission flag to automatically add the BS to the server. If this
option is enabled, the server will add any unknown BS to the list of registered BS with
default parameters.

http://en.iotvega.com/content/ru/soft/server/Win32OpenSSL-1_0_2n.zip

IOT Vega Server/Manual

11

Revision 14 - 01.03.2021

The [root] section defines the root user's identification, where root is the login,

and password is the password.

The [console] section specifies the amount of information to be output to the

console and stores it in the LOG file (the parameters of this section are updated every

minute, so you do not need to restart the server to change the output level):

maxMsgLevel - the maximum level of messages (inclusive) that will be displayed in the

server console. The decoding of message levels is given below;

maxLogMsgLevel - the maximum level of messages that will be stored in the LOG file.

maxLogFilesCnt – the number of files with LOG information. Server creates LOG files with
size limit for one file is 25Mb. This parameter setting up the number of those files. 0 – not
limited, 1 or 2 – 2 files, 3 – 3 files, etc.

Console message levels:

• 0 = messages with critical errors;
• 1 = uplink messages;
• 2 = downlink messages;
• 3 = warning messages;
• 4 = information messages (often with debugging information);
• 20 = messages with debugging information.

The [database] section contains the major settings of DB service functions. Records
in the DB tables created and deleted in the process of server working with the DB.
Herewith the DB files size is increase. Server optimizes the DB content, so that’s meant
that server deletes irrelevant data (storage time of RAW data for every device setting up
separately) and redistributes of freed up space after deletion of irrelevant data. Deletion of
irrelevant data performed every day (during up to one minute) and optimization of DB
tables performed with custom period. Optimization of DB tables may continuous during
up to several minutes (depend on DB server PC power). External interfaces of server will
be inactive during this time. Therefor the time of beginning the optimization performing
should choice during periods of less server load.
taskOptimizationTime – the time of beginning the DB optimization perform (format
hh:mm:ss);
defragPeriod – the period of BD optimization (in days).

The [external_db] section contains external database (DB) work settings – after

inserting changes need to restart server:
useExternalDb – flag permitting work with external DB. May be equal to 1 or 0;
typeExternalDb – parameter defines type of the external DB stroke. There are two DB
types supported at present time:

• MYSQL;
• SQLITE – work and create DB file with name that is different from default name

(«server.db»).

IOT Vega Server/Manual

12

Revision 14 - 01.03.2021

nameExternalDb – DB naming. For SQLITE it corresponds to file name, for MYSQL is to
scheme name;
ipExternalDb – IP address of the external DBMS server (don’t use for SQLITE) as a stroke
(supported value «localhost»);
portExternalDb – server port of the external DBMS (don’t use for SQLITE);
userExternalDb – username for authorization on the external DBMS server (don’t use for
SQLITE);
passwordExternalDb – password for authorization on the external DBMS server (don’t
use for SQLITE).

User must have the maximum rights to insert changes at the DB
composition

When you switch from a local database to an external database, when
you start the server for the first time, the data from the local database
will be moved to an external database

The [selftest] section contains the permission flag to send anonymous messages

with possible detected bugs.

The server in the work process accumulates information about possible failures

and can send data reports to Vega-Absolute developers once a day. This information will

be extremely useful while searching and solving possible server failures. The sent

information does not contain any confidential data.

The [email] section contains the major settings for work with e-mails. Current server
version have e-mail sending functional (see the corresponding API commands).

emailTimeout – minimal period of e-mail sending in seconds. Request on e-mail
sending which sent more often than custom period will be ignored.

Commands for the server are given in the API IOT Vega Server Rev22.pdf file.

IOT Vega Server/Manual

13

Revision 14 - 01.03.2021

IOT Vega AdminTool

IOT Vega AdminTool is a convenient Web application for server administration
and allows you to add new LoRaWAN end devices to the network, view the network
map, monitor the base stations, and manage user rights.

Let's see an example of connecting a new or editing the parameters of an
existing BS on the server (Figure 1).

Fig. 1. The connecting window the BS to the server.

Required settings:

Gateway ID - identifier of the BS (16 hexadecimal symbols - 8 bytes);
TX channel is the BS channel used to send messages to the end devices (downlink). This
parameter is specified in the software settings "packet_forwarder" on the BS (usually in
the file "global_conf.json"). The default is 0 channel;
Transmit power - broadcast power BS. The maximum broadcasting power is usually
determined by the circuitry of the BS and is limited in the software "packet_forwarder"; if
this parameter is exceeded, the BS will return an error with the corresponding code;

Here it is necessary to specify the criteria by which the required value of the
broadcast power is selected.

Let's look at the file "global_conf.json" from the settings of the software
"packet_forwarder" on the BS.

The list of valid sets of broadcast parameters "tx_lut_ .." contains a set of powers
on which the BS can transmit. For a standard list, this range is from -6 to 27 dBm with a
different pitch (16 in total).

There is also an "antenna_gain" parameter, which determines the antenna gain (in
dBm).

As a result, the difference in the values of "Transmit power" and "antenna_gain"

should correspond to one of the values from the list "tx_lut_ ..". For example,

IOT Vega Server/Manual

14

Revision 14 - 01.03.2021

"antenna_gain" = 3 dBm and it is planned to transmit data at a power of 10 dBm
("Transmit power"). The difference between "Transmit power" and "antenna_gain"; is
7dBm, but this value is not in the list "tx_lut_ .." (and if you use this set of parameters,
when you try to send data, the BS will send a message with an error about the incorrect
power). The closest allowed values from "tx_lut_ .." are 6 and 10 dBm, respectively, for
this configuration the allowed values of "Transmit power" will be 9 or 13 dBm.

RX only - flag indicating that the BS is only receiving. When this flag is set, data transfer
to the end devices via the corresponding BS is prohibited. This option is introduced for
the organization of a "full duplex BS": this is an option when two BSs are installed in the
immediate vicinity and one of them works only for reception, and the second works in
the usual mode. At the same time, a continuity of listening to the radio is achieved;
Companion Gateway - the identifier of the BS of the companion working in a normal
mode at the organization of "full duplex BS";
Comment - a field for comments (for example, the name of the BS);

Area Location - contains fields for inputting the location coordinates of the BS:
latitude, longitude, altitude. If the GPS has a built-in GPS receiver, the entered
coordinates will be updated with the current values automatically.

Let's analyze an example of registering a new device or changing the parameters
of an existing one (Figure 2 and Figure 3).

Figure 2 shows a screenshot of the form for registering the device with basic
parameters.

Fig. 2. The main parameters for registering the device on the server.

IOT Vega Server/Manual

15

Revision 14 - 01.03.2021

The Activation by personalization (ABP) area contains the parameters required to
register the device on the server via ABP:
devAddr is the device address in the LoRaWAN network. This is a 32-bit number in
hexadecimal form, for example 012345AB;
AppSKey - session key of the application is a string of 32 hexadecimal characters;
NwkSKey - network session key is a string of 32 hexadecimal characters.

The Over-the-air activation (OTAA) area contains the parameters required to
register the device on the server through OTAA:
AppEUI - EUI device application identifier - a string of 16 hexadecimal characters;
AppKey - the device application key is a string of 32 hexadecimal characters.

To register the device, it is sufficient to specify at least one of the activation types
or both.

The Main settings area contains the following parameters:
End-device name - the user name of the device;
DevEui - EUI device identifier (unique device number) - a string of 16 hexadecimal
characters;
End-device class - class of the device. This parameter can be equal to the two values:
CLASS_A or CLASS_C. Support for CLASS_B devices is under development.

The Location area contains fields for specifying the location coordinates of the
device: latitude, longitude, altitude.

IOT Vega Server/Manual

16

Revision 14 - 01.03.2021

Fig. 3. Expert parameters for registering the device on the server.

Clicking on the checkbox Expert settings, you can access the expert settings of

the device (see Figure 3).
The Class C device settings area is only available to CLASS_C devices. The

following options are available:
Class C reaction time is the reaction time of the CLASS_C device. This is the time
between the end of the reception of the server message by the device and the
beginning of the sending of a possible response from the device (ie, in fact, the time to
prepare a possible response). The parameter is introduced to improve the quality of
work with messages from the server to devices of class C;
Use downlink queue for Class C - flag allowing to place packets for sending to the
sending queue. Often CLASS_C devices work in "online" mode and if the package is not
delivered to the device at the moment, its delivery is no longer required - in this case the
queue of packages is not needed. Quite the contrary, the queue will play a negative role,
as a drive of already obsolete information, which will be transmitted without fail,
occupying airtime. By default, the option is disabled.

The Adaptive data rate area contains settings for the ADR algorithm designed to
automatically change the speed of the broadcasts of devices depending on the quality

IOT Vega Server/Manual

17

Revision 14 - 01.03.2021

of the connection (in good reception conditions, the speed will increase, thereby
reducing the transmission time of packets and increasing the battery life of the device):
Enable server ADR - a flag that allows the ADR algorithm to work on the server for a
specific device (if the checkbox is cleared, the server will not adjust the transfer rate of
the device, even if the ADR algorithm on the device itself is activated);
Preferred data rate - the value of DR (speed) to which the ADR algorithm of the server
will strive;
Preferred transmit power - the power of the device's transmitter that the server will set
to it in the next session.

The parameter ‘Preferred transmit power’ should be changed
(reduced relative to the default value) in the case that the quality of
the connection for the device at maximum speed is satisfactory

The Device RX settings area contains settings for the device receiving windows:

RX window - the number of the receiving window (1 or 2) through which the server will
transmit data by default. If you set the first window, then if the server cannot send data
to the 1st receiving window (for example, there is no free BS), an attempt will be made to
send data to the 2nd receiving window;
RX1 delay - the delay of the device opening the first receiving window (the default is 1
second). The 2nd receiving window is always opened (if the data was not received at the
first receiving window) 1 second after the 1st;
RX2 data rate - data transfer rate for the 2nd receiving window;
Join accept delay 1 - the delay of the device opening the first receiving window for
obtaining registration information when activated on the network by the OTAA method
(by default 5 seconds).

If the gateway operates via the mobile Internet, then the delay in
delivering packets to such a gateway can reach significant values.
Therefore, in order to avoid problems with the operation of devices
(sending confirms and MAC commands), it is necessary to shift the
opening time of the first receiving window by more than 1s. Usually 3s
interval is sufficient. In some cases, you will need to shift to a larger
interval - you need to monitor the stability of the network.

The Regional settings area contains the frequency plan settings for the

corresponding device. Here we offer a choice of two existing sets (the official European
frequency plan and one of the variants of the Russian frequency plan), and there is also
the possibility to configure a unique set of frequencies.
Each of the frequency sets consists of:

• Three channels with fixed frequencies (these channels are fixed in the
device without the possibility of changing them through the LoRaWAN
protocol);

• Five channels for receiving and transmitting messages. If the channel is
not used, you must set the frequency to zero and disable the
corresponding check box in the Enabled settings;

• One channel that determines the frequency of data reception for the
second receiving window.

IOT Vega Server/Manual

18

Revision 14 - 01.03.2021

The active channel mask (the Enabled flags list) is located to the left of the
frequency input fields and contains the disable/enable flags of the corresponding
channels (frequencies) for data transfer on the device. This parameter is passed to the
device at each JOIN procedure and in each message of the ADR algorithm (if ADR is
enabled).

IOT Vega Server/Manual

19

Revision 14 - 01.03.2021

Attachment A. Description of the database
structure

IOT Vega Server constantly uses the database (built-in SQLite or external) in the
course of its work. To get started, you need minimal settings for accessing the external
database, and for the built-in database settings are not required at all. The database
structure is automatically created in both cases. It is necessary to exclude the influence of
the user directly on the database structure, so as not to disrupt the server.

However, there is an option to work with the database in read-only mode. For
example, while reading the accumulated data from the device. This approach is designed
to remove the load from the server to read data from devices through the API and
generally speed up the system work with user requests.

The database consists of the next tables:
• «bs» - list of connected gateways;
• «devices» - list of connected end-devices;
• «rawdata» - data received from devices and transferred to devices;
• «queuetransmit» - queue for sending packets to the device;
• «coveragemap» - the list of gateways through which data was received from

the corresponding device. According to this table, you can build a network coverage map;
• «deviceattributes» - property list of the corresponding device;
• «users» - a list of users;
• «userdevices» - list of devices available to the appropriate user.

Description of «queuetransmit», «deviceattributes», «users» and
«userdevices» tables will not be given, because these tables either store
buffer information, or information in a specific format. It is assumed that
this information does not require direct access for reading and is always
available through fast executable API commands

IOT Vega Server/Manual

20

Revision 14 - 01.03.2021

Table 1 – Fields structure of the «bs» database table
Field Data type Description

id INTEGER Identifier (is not used)

mac TEXT Gateway ID

comment TEXT Comment

latency INTEGER Current network latency gateway-server

downport INTEGER Port for data transfer to the gateway

hostaddress TEXT Gateway IP address for data transfer

longitude REAL /

DOUBLE

GW coordinate – longitude

latitude REAL /

DOUBLE

GW coordinate – latitude

altitude INTEGER GW coordinate – altitude

active INTEGER GW activity flag (on-line)

rxonly INTEGER GW operation flag is only for reception

complimentarybsmac TEXT ID of the GW-companion through which it is allowed to

transmit data if the current GW only works for reception

downlinkchannel INTEGER Data transmission channel

maxpower INTEGER Transmission power through the GW

lastonline INTEGER Time of the last activity of the GW

Table 2 – Fields structure of the «rawdata» database table

Field Data type Description

data BLOB Data in the HEX array

macbs TEXT The gateways ID through which the packet was transmitted is
combined through the "+" sign

deveui TEXT Device ID

rssi INTEGER RSSI

snr REAL / DOUBLE SNR

freq INTEGER Frequency in Hz

sf INTEGER SF

time INTEGER Time in ms format that has passed since the beginning of the

UNIX era

fcntup INTEGER Packet number

port INTEGER Number of the used port

ack INTEGER Presence of the ACK flag in the package

macdata BLOB MAC commands

type INTEGER Packet type (see command «get_data» description in API)

direction INTEGER Direction of transmission: «UPLINK» or «DOWNLINK»

status TEXT Status (see command «get_data» description in API)

activationside INTEGER Flag, shows the type of activation used while transmitting the
current packet

id BIGINT Unique ID of the string

IOT Vega Server/Manual

21

Revision 14 - 01.03.2021

Table 3 - Fields structure of the «coveragemap» database table

Field Data type Description

id INTEGER Identifier (is not used)

deveui TEXT Device ID

macbs TEXT Gateway ID

snr REAL / DOUBLE SNR

rssi INTEGER RSSI

time INTEGER Time in ms format that has passed since the beginning of the UNIX
era

Table 4 - Fields structure of the «devices» database table

Field Data type Description

deveui TEXT Device ID

devname TEXT Name of the device

appeui TEXT Device AppEUI

appkey BLOB AppKEY

devaddrabp INTEGER DevAddr for ABP activation type

nwkskeyabp BLOB NwkSKEY for ABP activation type

appskeyabp BLOB AppSKEY for ABP activation type

devaddrotaa INTEGER DevAddr, generated by the server with OTAA activation type

nwkskeyotaa BLOB NwkSKEY, generated by the server with OTAA activation type

appskeyotaa BLOB AppSKEY, generated by the server with OTAA activation type

devnonce INTEGER Last DevNonce in JOIN request

lastjoints INTEGER Last JOIN request in ms format, that has passed since the

beginning of the UNIX era

class INTEGER Device class: 1 = «А», 3 = «С»

rxwinnum INTEGER The number of the receiving window on the device

timingprof INTEGER Is not used, may be absent

lastrssi INTEGER Last RSSI at the device packet

lastsnr INTEGER Last SNR at the device packet

lastpower INTEGER Transmission power of the device

lastsf INTEGER Last SF at the device packet

lastch INTEGER Is not used

preferdr INTEGER Max DR with ADR work

preferpower INTEGER Is not used

fcntup INTEGER Last received packet number

fcntdown INTEGER Last transmitted packet number

dutycycle INTEGER Is not used

IOT Vega Server/Manual

22

Revision 14 - 01.03.2021

chanmask INTEGER 16-bit channel mask

battery INTEGER Is not used

adr INTEGER The permission flag to use ADR (device)

macbs TEXT Is not used

lastdatats INTEGER The last device activity time in ms

longitude REAL / DOUBLE Device coordinate – longitude

latitude REAL / DOUBLE Device coordinate – latitude

altitude INTEGER Device coordinate – altitude

freqplan INTEGER Is not used, may be absent

reactiontime INTEGER Device response time

lastactivatside INTEGER The activation type used in the last received packet

rx1delay INTEGER Delay of opening the first receiving window, s

rx2delay INTEGER Delay of opening the second receiving window, s

join1delay INTEGER Delay of opening the first receiving window with JOIN, s

join2delay INTEGER Delay of opening the second receiving window with JOIN, s

rx2dr INTEGER DR the second receiving window of the device

rx2freq INTEGER Frequency of the second receiving window, Hz

freq4 INTEGER Frequency of the channel №4, Hz

freq5 INTEGER Frequency of the channel №5, Hz

freq6 INTEGER Frequency of the channel №6, Hz

freq7 INTEGER Frequency of the channel №7, Hz

freq8 INTEGER Frequency of the channel №8, Hz

usedownqueue INTEGER Package queue packet send flag

adrthrescounter INTEGER The buffer parameter

serveradrenable INTEGER The permission flag to use ADR (server)

id BIGINT Unique ID of the string

hash BLOB Unique hash sum for that device

datastorageperiod INTEGER Data storage period for that device

lastfreq INTEGER Frequency of the last accepted message

IOT Vega Server/Manual

23

Revision 14 - 01.03.2021

Attachment B. Structure and composition of
the main messages in the console

IOT Vega Server application in the process of working displays some operational
information in the console. The amount of displayed information depends on the
corresponding server settings (see description of the configuration file).

In the console, messages may appear with debugging information, the contents
of which may change. But the basic types of messages are unchanged. Below are
descriptions of their structure and composition.

1. A message about an unsupported version of the protocol used in the

PacketForwarder software on the GW.
The message is highlighted in red and starts with a line «WARNING! Skip gateway

msg, invalid protocol version:». Next information is about the GW IP-address and the
protocol version used;

2. A message is about an error that occurred when the packet was transferred

to the device via the GW.
The message is highlighted in lilac and has a format: «<< %1 | TX_ACK %2 |

%3», where
%1 – gateway ID;
%2 – error reception time;
%3 – error code as a string.
Possible error codes:

• «TOO_LARGE_GW_PING_ERR» - ping to GW is too big;
• «COLLISION_ERR» - the packet time specified in the packet is already

taken up by another message;
• «POWER_ERR» - in the last packet an incorrect transmission power value

indicated;
• «FREQ_ERR» - in the last packet an incorrect transmission frequency value

indicated;
• «NO_VACANT_GW» - no vacant gateway;
• «PAYLOAD_SIZE_ERR» - it is impossible to send a packet of specified

length.

3. Message about accepted JOIN request.
The message is highlighted in yellow and has a format: «>> GW-%1: JOIN_REQ

| %2 | %3 | %4 | SF%5 | RSSI:%6 | %7 | %8», where
%1 – GW ID;
%2 – device ID (DevEUI);
%3 – date and time of message reception, accurate to ms;
%4 – frequency in MHz, accurate to 100 kHz;
%5 – SF value;
%6 – RSSI value;
%7 – SNR value;
%8 – result of message processing. Can take one of the following values:

• «VALIDATED» - the request has been processed correctly, a response will
be sent;

IOT Vega Server/Manual

24

Revision 14 - 01.03.2021

• «UNKNOWN DEVICE | DEVNONCE=0x%1» - unknown device, where %1
– is DevNonce used in the package in HEX;

• «REPETITION DEVNONCE» - repeated request reception;
• «INVALID APPEUI» - the AppEUI value from the request does not match

what was specified when registering the device.

4. The message about the sent answer to the JOIN request.
The message is highlighted in blue and has a format: «>> GW-%1: JOIN_REQ |

%2 | %3 | %4 | SF%5 | VALIDATED», where
%1 – gateway ID;
%2 – device ID (DevEUI);
%3 – date and time of message reception, accurate to ms;
%4 – frequency in MHz, accurate to 100 kHz;
%5 – SF value.

5. Notification of the received packet from the device.
The message is highlighted in green and has a format: «>> GW-%1: %2 | %3 |

%4 | %5 | SF%6 | RSSI:%7 | %8 | CNT:%9 | PORT:%10 | %11», где
%1 – gateway ID;
%2 – packet type. «CONF_UP» or «UNCOF_UP» is used. If there are MAC data in
the packet, the «+М» characters are added to the type;
%3 – device ID (DevEUI);
%4 – date and time of message reception, accurate to ms;
%5 – frequency in MHz, accurate to 100 kHz;
%6 – SF value;
%7 – RSSI value;
%8 – SNR value;
%9 – packet number;
%10 – port number;
%11 – additional information. May consist of the next information:

• if the packet is repeated from the device, this field contains the code
«REPETITION PACKET» and the message text color turns navy blue;

• otherwise it contains information about the size of the received message in
the form of «[%1]», where %1 – is the size of the message in bytes. If in
addition the MAC data is contained, then their size is added in the form «|
М [%1]», where %1 – is the size of the MAC data in bytes.

6. The message about the sent package for the device.
The message is highlighted in violet and has a format: «>> GW-%1: %2 | %3 |

%4 | %5 | SF%6 | CNT:%7 | PORT:%8 | %9», where
%1 – GW ID;
%2 – packet type. «CONF_DOWN» or «UNCOF_DOWN» is used. If there are MAC
data in the packet, the «+М» characters are added to the type;
%3 – device ID (DevEUI);
%4 – date and time of arrival of the message sending confirmation (not to be
confused with the actual sending time);
%5 – frequency in MHz, accurate to 100 kHz;
%6 – SF value;
%7 – packet number;
%8 – port number;

IOT Vega Server/Manual

25

Revision 14 - 01.03.2021

%9 – contains information about the size of the transmitted message in the form
«[%1]», where %1 – is the size of the message in bytes. If in addition the MAC
data is contained, then their size is added in the form «| М [%1]», where %1 – is
the size of the MAC data in bytes.

7. Reporting errors when sending data.
The message is highlighted in red and has a format: «>> GW-%1: %2 | %3 |

%4 | %5 |», where
%1 – GW ID;
%2 – packet type. «UNCONF», «CONFRM» or «UNCKNOWN» is used. If there are
MAC data in the packet, the «+М» characters are added to the type;
%3 – device ID (DevEUI);
%4 – date and time of attempted unsuccessful sending;
%5 – error code as a string.
Possible error codes:

• «TOO_LARGE_GW_PING_ERR» - ping to GW is too big;
• «COLLISION_ERR» - the packet time specified in the packet is already

taken up by another message;
• «POWER_ERR» - in the last packet an incorrect transmission power value

indicated;
• «FREQ_ERR» - in the last packet an incorrect transmission frequency value

indicated;
• «NO_VACANT_GW» - no vacant gateway;
• «PAYLOAD_SIZE_ERR» - it is impossible to send a packet of specified

length.

IOT Vega Server/Manual

26

Revision 14 - 01.03.2021

Document Information

Title IOT Vega Server

Document type Manual – Translation from Russian

Document number В02-server-01

Revision and date 14 - 01.03.2021

This document applies to the following products:

Product name Type number

Software IOT Vega Server

 IOT Vega Admin Tool

Revision history

Revision Date Name Comments

01 06.05.2017 KEV Document creation date

02 06.06.2017 MAI Minor edits

03 06.16.2017 KEV Minor edits

04 07.10.2017 MAI
Part ‘Installation’ was added, part ‘Settings’ was
corrected

05 08.14.2017 KEV Minor edits

06 08.31.2017 MAI
Part ‘IOT Vega AdminTool’ was added, part ‘Settings’
was corrected

07 09.27.2017 MAI Minor edits in the part ‘IOT Vega AdminTool’

08 12.20.2017 MAI Changes in the part “Settings”

09 01.15.2018 MAI
Changes in the part “Installation” and “Settings” due to
Linux-ARM version additional

10 01.22.2018 BIY
At the “Settings” part were added recommendations for
using valid characters while correcting settings.conf and
link on openssl

11 02.12.2018 MAI Attachments A and B were added

12 28.09.2018 MAI
Server description, configuration file and DB tables
content were changed

13 31.10.2019 KEV Added some abilities of software

14 01.03.2021 KEV Part “Abilities” was changed

vega-absolute.ru

User Manual © «Vega-Absolute» OOO 2017-2021

	IOT Vega Server description
	Abilities
	Functionality
	Installation
	Settings
	IOT Vega AdminTool
	Attachment A. Description of the database structure
	Attachment B. Structure and composition of the main messages in the console

